Вестник МГТУ, 2025, Т. 28, № 1.
Вестник МГТУ. 2025. Т. 28, № 1. С. 92-102. DOI: https://doi.o rg/10 .21443/1560-9278-2025-28-1-92-102 Русин Е. П., Стажевский С. Б. О современном состоянии и перспективах шведского варианта системы добычи руд с подэтажным обрушением // Интерэкспо Гео-Сибирь. 2017. Т. 2, № 2. С. 112-116. EDN : YRPOQD. Савич И. Н. Обоснование параметров систем с принудительным обрушением при подземной разработке рудных месторождений // Горный журнал. 2021. № 9. С. 18-21. DOI: https://doi.org/10.17580/ gzh.2021.09.03. EDN : GFQSGO. Соколов И. В., Антипин Ю. Г., Никитин И. В. Принципы формирования и критерий оценки геотехнологической стратегии освоения переходных зон рудных месторождений подземным способом // Горный информационно-аналитический бюллетень (научно-технический журнал). 2017. № 9. С. 151-160. EDN: ZQJLXZ. Яковлев В. Л. Основные этапы и результаты исследований по разработке методологических основ стратегии развития горнотехнических систем при освоении глубокозалегающих месторождений твердых полезных ископаемых // Горная промышленность. 2022. № S1. С. 34-45. DOI: https://doi.org/10.30686/1609-9192- 2022-1s-34-45. EDN: VAOOGJ. Lovitt M. Evolution of sublevel caving - safety improvement through technology // AusIMM Bulletin. 2016. P. 82-85. URL: https://search.informit.org/doi/10.3316/ielapa.079542598526852. Mijalkovski S., Despodov Z. , Mirakovski D . , Adjiski V . [et al.]. Methodology for optimization of coefficient for ore recovery in sublevel caving mining method // Podzemni radovi. 2017. P. 19-27. DOI: https://doi.org/ 10.5937/podrad1730019s. Quinteiro C. Design o f a new layout for sublevel caving at depth // Caving 2018: Proceedings o f the Fourth International Symposium on Block and Sublevel Caving / eds.: Y. Potvin, J. Jakubec. Australian Centre for Geomechanics, Perth, 2018. P. 433-442. DOI: https://doi.org/10.36487/ACG_rep/1815_33_Quinteiro. Sokolov I. V., Antipin Yu. G., Rozhkov A. A., Nikitin I. V. Mining factors effect on the technical and economic indicators of mining the upper sublevel under the rock cushion at iron ore deposits // Известия высших учебных заведений. Горный журнал. 2021. N 8. P. 5-14. EDN : HWZGMC. Whittle D., Brazil M., Grossman P. A., Rubinstein J. H. Combined optimisation o f an open-pit mine outline and the transition depth to underground mining // European Journal o f Operational Research. 2018. Vol. 268, Iss. 2. P. 624-634. DOI: https://doi.org/10.1016/j.ejor.2018.02.005. References Antipin, Yu. G., Nikitin, I. V., Solomein, Yu. M. 2021. Finding effective technological schemes for developing the transition zone of the Maly Kuibas iron ore deposit. Izvestija Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle, 3, pp. 105-117. DOI: 10.46689/2218-5194-2021-3-1-87-99. EDN: HOWWTW. (In Russ.) Antipin, Yu. G., Baranovskij, K. V., Rozhkov, A. A., Nikitin, I. V. et al. 2022. Optimization of parameters of underground geotechnology for development o f quarry reserves of ore deposits by the method of economic and mathematical modeling. Vestnik o f Nosov Magnitogorsk State Technical University, 20(2), pp. 23-35. DOI: https://doi.org/10.18503/1995-2732-2022-20-2-23-35. EDN: KKYKSU. (In Russ.) Burmistrov, K. V., Mikhajlova, G. V., Khilazhev, A. R., Dautbaev, Z. R. et al. 2016. Assessing the feasibility of reconstructing the Maly Kuibas open-pit mine with the involvement of edge reserves in the development. Current Issues o fModern Science, Technology and Education, 1, pp. 34-37. EDN : WMBNXX. ( In Russ.) Kalmykov, V. N., Gavrishev, S. E., Burmistrov, K. V., Gogotin, A. A. et al. 2013. Justification of rational options for the transition from open to underground mining at the Maly Kuibas deposit. M ining Informational and Analytical Bulletin (Scientific and Technical Journal), 4, pp. 132-139. EDN : RABXFN. ( In Russ.) Kulikov, V. V. 1980. Ore release. Moscow. (In Russ.) Lizunkin, M. V. 2021. Justification of geotechnology for underground mining of complex-structured ore deposits. Abstract o f Ph.D. dissertation. Chita. (In Russ.) Lobanov, E. A., Eremenko, A. A. 2021. Development of quarry ore reserves of the Oleniy Ruchey deposit. Vestnik o f Kuzbass State Technical University, 4(146), pp. 86-95. DOI: https://doi.org/10.26730/1999-4125- 2021-4-86-95. EDN : OJIYZU. ( In Russ.) Rusin, E. P., Stazhevskij, S. B. 2017. On the current state and prospects of the Swedish version o f the ore mining system with sublevel caving. Interexpo Geo-Siberia, 2(2), pp. 112-116. EDN : YRPOQD. ( In Russ.) Savich, I. N. 2021. Justification of the parameters of forced caving systems in underground mining of ore deposits. Gornyi Zhurnal , 9, pp. 18-21. DOI: https://doi.org/10.17580/gzh.2021.09.03. EDN : GFQSGO. ( In Russ.) Sokolov, I. V., Antipin, Yu. G., Nikitin, I. V. 2017. Principles of formation and criteria for assessing the geotechnological strategy for developing transition zones of ore deposits by underground mining. Mining Informational and Analytical Bulletin (Scientific and Technical Journal), 9. pp. 151-160. EDN: ZQJLXZ. (In Russ.) Yakovlev, V. L. 2022. The main stages and results of research on the development of methodological foundations for the development strategy of mining systems in the development of deep-lying deposits of solid minerals. Mining Industry Journal, S1, pp. 34-45. DOI: https://doi.org/10.30686/1609-9192-2022-1s- 34-45. EDN: VAOOGJ. (In Russ.) 101
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz