Арктика 2035: актуальные вопросы, проблемы, решения. 2025, №2.
81 Технологии науч. рук. П. В. Родионов // Экология и безо- пасность в техносфере: современные про- блемы и пути решения: сб. тр. Всероссийской науч.-практ. конф. молодых ученых, аспиран- тов и студентов, г. Юрга, 22–24 нояб. 2018 г. — Томск: Изд-во ТПУ, 2018. — С. 405–407. — URL: http://earchive.tpu.ru/handle/11683/52089 (дата обращения: 05.05.2025). 8. Максимов А. В., Матвеев А. В. Перспекти- вы применения искусственного интеллекта в анализе больших данных социальных сетей при возникновении чрезвычайных ситуаций // Сервис безопасности в России: опыт, про- блемы, перспективы. Современные методы и технологии предупреждения и профилактики возникновения чрезвычайных ситуаций: мате- риалы XI Всерос. науч.-практ. конф. СПб.: С.-Пе- терб. ун-т ГПС МЧС России, 2019. — С. 284–286. 9. Bari M., Khan M. N., Rahman A. et al. Potential Use of Artificial Intelligence (AI) in Disaster Risk and Emergency Health Management: A Critical Appraisal // Healthcare. 2023. — Vol. 11, Issue 9. — URL: https://www.mdpi.com/2227- 9032/11/9/1349 (дата обращения: 05.05.2025). 10. Hickling M., Farag M., Marcotte R., Mahboubi H. Deep Reinforcement Learning based Autonomous Decision-Making for Cooperative UAVs: A Search and Rescue Real World Application // arXiv.org. 2025. arXiv:2403.10321. — URL: https://arxiv.org/ abs/2403.10321 (дата обращения: 05.05.2025). 11. Kumar P., Rao K. V. S., Radhakrishna M. Wildfire and Smoke Early Detection for Drone Applications: A Light-Weight Deep Learning Approach // arXiv.org. 2024. arXiv:2404.04291. — URL: https://arxiv.org/abs/2404.04291 (дата обращения: 05.05.2025). 12. Papyan V., Fridovich-Keil S., Yosinski J. AI- based Drone Assisted Human Rescue in Disaster Environments: Challenges and Opportunities // arXiv.org. 2024. arXiv:2403.16411. — URL: https:// arxiv.org/abs/2403.16411 (дата обращения: 05.05.2025). 13. Rahnemoonfar M., Hashemi-Beni L., Alizadehashrafi B. et al. RescueNet: A High Resolution UAV Semantic Segmentation Dataset for Natural Disaster Damage Assessment // arXiv. org. 2024. arXiv:2403.12437. — URL: https:// arxiv.org/abs/2403.12437 (дата обращения: 05.05.2025). 14. Alfaro D., Torres L., Acevedo J., Saravia G. Structural Damage Detection Using an Unmanned Aerial Vehicle-Based 3D Model and Deep Learning // Remote Sensing. — 2024. Vol. 16, Issue 4. — URL: https://www.mdpi.com/2072- 4292/16/4/736 (дата обращения: 05.05.2025). 15. Hewawiththi S., Zhang D., Ma S. Damage Assessment after Natural Disasters with UAVs: Semantic Feature Extraction of the Ministry of Emergency Situations of Russia for the prevention and elimination of emergency situations / A.V. Dudarev; scientific supervisor P. V. Rodionov // Ecology and safety in the technosphere: modern problems and solutions: collection of proceedings of the All-Russian Scientific and Practical Conference of Young Scientists, postgraduates and Students, Yurga, November 22–24, 2018. — Tomsk: TPU Publishing House, 2018. — Рp. 405–407. — URL: http:// earchive.tpu.ru/handle/11683/52089 (date of request: 05.05.2025). 8. Maksimov A. V., Matveev A. V. Prospects for the use of artificial intelligence in the analysis of big data of social networks in emergency situations // Security service in Russia: experience, problems, prospects. Modern methods and technologies for the prevention and prevention of emergency situations: materials of the XI All-Russian Scientific and Practical Conference. — St. Petersburg: St. Petersburg State University of the Ministry of Emergency Situations of Russia, 2019. — Рр. 284–286. 9. Bari M., Khan M. N., Rahman A. et al. Potential use of artificial intelligence (AI) in disaster risk management and emergency medical care: a critical assessment // Healthcare. 2023. Vol. 11, Issue 9. — URL: https://www.mdpi.com/2227- 9032/11/9/1349 (date of request: 05.05.2025). 10. Hickling M., Farag M., Marcotte R., Mahboobi H. Autonomous decision-making based on deep learning with reinforcement for collaborative drones: A real-world search and rescue application // arXiv.org.2025. arXiv:2403.10321. — URL: https://arxiv.org/abs/2403.10321 (accessed 05.05.2025). 11. Kumar P., Rao K. V. S., Radhakrishna M. Early detection of forest fires and smoke for unmanned aerial vehicles: an easy approach to deep learning // arXiv.org. 2024. arXiv:2404.04291. — URL: https://arxiv.org/abs/2404.04291 (date of request: 05.05.2025). 12. Papyan V., Fridovich-Kale S., Josinski J. An artificial intelligence-based drone that helps rescue people in natural disasters: challenges and opportunities // arXiv.org. 2024. arXiv:2403.16411. — URL: https://arxiv.org/ abs/2403.16411 (date of access: 05.05.2025). 13. Rahnemunfar M., Hashemi-Beni L., Alizadeh Hashrafi B. et al. RescueNet: A set of high- resolution UAV semantic segmentation data for disaster damage assessment // arXiv.org. 2024. arXiv:2403.12437. — URL: https://arxiv.org/ abs/2403.12437 (date of request: 05.05.2025). 14. Alfaro D., Torres L., Acevedo H., Saravia G. Detection of structural damage using a 3D model of an unmanned aerial vehicle and deep learning // Remote sensing. — 2024. Vol. 16, Issue 4. — URL: https://www.mdpi.com/2072- 4292/16/4/736 (date of access: 05.05.2025). 15. Hewawithi S., Zhang D., Ma S. Damage assessment after natural disasters using unmanned aerial vehicles: semantic feature extraction.
Made with FlippingBook
RkJQdWJsaXNoZXIy MTUzNzYz